Math 115
Spring 2018
Lecture 30

$$
\begin{aligned}
& ? a^{2}+10^{2}=c^{2} ? \\
& y=m x+b d=r t
\end{aligned}
$$

Class QZ:
(1)Simplify: $\frac{x-\frac{36}{x}}{x-10+\frac{24}{x}}=\frac{x^{2}-36}{x^{2}-10 x+24}=\frac{(x+6)(x-6)}{(x-6)(x-4)}$

$$
L C D=x
$$

$$
=\frac{x+6}{x-4}
$$

(2) Solve $\frac{2}{x-3}-\frac{1}{x+5}=\frac{16}{x^{2}+2 x-15}$

$$
\begin{aligned}
& \text { LCD }=(x-3)(x+5) \text { E.V.: } 3 \xi-5 \\
& 2(x+5)-1(x-3)=16 \\
& 2 x+10-x+3=16
\end{aligned}
$$

The sum of a number and
3 times its reciprocal is $\frac{28}{5}$.
find all such numbers.
Let x be the number,

$$
\left.\begin{array}{ll}
x+3 \cdot \frac{1}{x}=\frac{28}{5} \\
x+\frac{3}{x}=\frac{28}{5} & 5 x \cdot x+5 x \frac{3}{x}=6 x \cdot \frac{28}{5} \\
L C D=5 x \quad & 5 x^{2}+15=28 x
\end{array}\right] \begin{array}{ll}
a=5 \quad b=-28 \quad C=15 & 5 x^{2}+15-28 x=0 \\
b^{2}-4 a c=(-28)^{2}-4(5)(15) & 5 x^{2}-28 x+15=0 \\
=784-300 & a x^{2}+b x+c=0 \\
=484 & \begin{array}{l}
x=\frac{-(-28) \pm \sqrt{484}}{2(5)}=\frac{28 \pm 22}{10} \\
x=\frac{-b \pm b^{2}-4 a c}{2 a}=\frac{28-22}{10}=\frac{6}{10}=\frac{3}{5} \\
x=\frac{28+22}{10}=\frac{50}{10}=5 \quad
\end{array} \\
& \begin{array}{l}
\text { Numbers are } 53 / 5
\end{array}
\end{array}
$$

The difference of an integer and 3 times its reciprocal is $\frac{13}{4}$.
find all such integers.
Let x be some integer,

$$
\begin{aligned}
& x-3 \cdot \frac{1}{x}=\frac{13}{4} \\
& x-\frac{3}{x}=\frac{13}{4} \quad \underbrace{L C D=4 x} \quad 4 x^{2}-12=13 x \\
& 4 x^{2}-12-13 x=0 \quad b^{2}-4 a C=(-13)^{2}-4(4)(-12) \\
& 4 x^{2}-13 x-12=0 \\
& \begin{array}{l}
a=4 \quad b=-13 \quad C=-12
\end{array} \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-13) \pm \sqrt{361}}{2(4)}=\frac{13 \pm 19}{8} \\
& x=\frac{13+19}{8}=\frac{32}{8}=4 \quad x=\frac{13-19}{8}=\frac{-b}{8}=\frac{-3}{4} \\
& \text { The integer is } 4 .
\end{aligned}
$$

The sum of the reciprocal of two Consecutive integers is $\frac{9}{20}$.
Find all such consecutive integers. Let $x \geqslant x+1$ be two Cons. integers, Their reciprocal is $\frac{1}{x} \& \frac{1}{x+1}$

$$
\begin{aligned}
& {\left[\frac{1}{x}\right]+\frac{1}{\frac{1}{x+1}}=\frac{9}{20}} \\
& \text { LCD }=x(x+1) \cdot 20 \quad \text { E.N. } 0,-1 \\
& 20(x+1)+20 x=9 x(x+1) \\
& 20 x+20+20 x=9 x^{2}+9 x \\
& 40 x+20=9 x^{2}+9 x \\
& \rightarrow x^{2}+9 x-40 x-20=0 \\
& 9 x^{2}-31 x-20=0 \\
& a=9 \quad b=-31 \quad C=-20
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
a=9 \quad b=-31 \quad c=-20 \\
b^{2}-4 a c=(-31)^{2}-4(9)(-20)=1681
\end{array} \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-31) \pm \sqrt{1681}}{2(9)} \\
& =\frac{31 \pm 41}{18} \quad x=\frac{31+41}{18}=\frac{72}{18}=\underbrace{\frac{31}{18}} \begin{array}{l}
\text { Cons. integers are } \\
4=\frac{31}{18}=\frac{10}{18} \\
\text { Not an integer }
\end{array}
\end{aligned}
$$

Eric can do a job alone in 3 hrs while Mark can do the Same job in 5 hrs alone.
How long if they work together?

$$
\begin{aligned}
& \text { work work one } \\
& \text { by }+ \text { by }=\text { Complete } \\
& \text { Eric Mark work } \\
& \frac{1}{3} \cdot t+\frac{1}{5} \cdot t=1 \\
& L C D=15 \\
& \begin{array}{l}
5 t+3 t=15 \\
8 t=15 \\
t=15 / 8=1.875 \\
\text { hus }
\end{array}
\end{aligned}
$$

It takes Ashley 3 times longer than Taylor to do a job alone.
Together, They can do it in 21 days.
How long if they work alone?

Taylor $\rightarrow x$	work		
by			
Ashley $\rightarrow 3 x$	Work		
Taylor		\quad	bye
:---:			
Ashley Comp.			

$$
\begin{aligned}
& 21+7=x \quad \text { Q } \frac{1}{x} \cdot 21+\frac{1}{3 x} \cdot 21=1 \\
& \begin{array}{c}
x=28 \\
\begin{array}{ll}
\text { Taylor } & 28 \\
\dot{\varepsilon}_{1} \\
\text { Ashley } & 84 \\
\text { DaYs } \\
\text { Days }
\end{array}
\end{array} \quad \begin{array}{l}
\frac{21}{x}+\frac{2 x 7}{3 x}=1 \\
\frac{21}{x}+\frac{7}{x}=1 \\
\text { LCD }=x
\end{array}
\end{aligned}
$$

It takes Jerry 18 more minutes than Dan to wash a Car.
working together, They can wash the car in 12 minutes.

$$
\operatorname{Dan} \rightarrow x
$$

How long if they work alone? Jd

$$
\begin{aligned}
& \frac{1}{x} \cdot 12+\frac{1}{x+18} \cdot 12=1 \quad \frac{12}{x}+\frac{12}{x+18}=1 \\
& 12(x+18)+12 x=x(x+18) \\
& 12 x+216+12 x=x^{2}+18 x \\
& 24 x+216=x^{2}+18 x \\
& x^{2}+18 x-24 x-216=0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
x^{2}-6 x \quad-216=0 \\
a=1 \quad b=-6 \quad c=-216 \\
b^{2}-4 a c=(-6)^{2}-4(1)(-216)=900 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{6 \pm \sqrt{900}}{2}=\frac{6 \pm 30}{2} \\
x=\frac{6+30}{2} \\
x=18 \quad x=\frac{6-30}{2} \\
\text { Jerry is ins }
\end{array} \underbrace{2}_{\text {Dan } 36 \text { ming. }}
\end{aligned}
$$

Simplify: $\frac{5}{x^{2}-2 x-15}-\frac{3}{x^{2}-25}$

$$
\begin{aligned}
& =\frac{5(x+5)}{(x-5)(x+3)(x+5)}-\frac{3(x+3)}{(x+5)(x-5)(x+3)} \\
& =\frac{5 x+25-3 x-9}{(x-5)(x+3)(x+5)}=\frac{2 x+16}{(x-5)(x+3)(x+5)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Simplify: } \frac{3 x^{2}+5 x-2}{9 x^{2}-1} \div \frac{x^{2}+5 x+6}{9 x^{2}+6 x+1} \\
& =\frac{(3 x-1)(x+2)}{(3 x+1)(3 x-1)} \cdot \frac{(5 x+1)(3 x+1)}{(x+3)(x+2)} \\
& =\frac{3 x+1}{x+3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solve } \frac{x+3}{x^{2}-5 x-24} x^{2}-25 \\
& (x+3)\left(x^{2}-25\right)=24\left(x^{2}-5 x\right) \\
& x^{3}-25 x+3 x^{2}-75=24 x^{2}-120 x \\
& x^{3}+3 x^{2}-25 x-75-24 x^{2}+120 x=0 \\
& x^{3}-21 x^{2}+95 x-75=0
\end{aligned}
$$

Divide the LHS by $x-5$, doing long

$$
\begin{array}{r}
x^{2}-16 x \text { Division. } \\
x - 5 \longdiv { x ^ { 3 } - 2 1 x ^ { 2 } + 9 5 x - 7 5 } \\
\frac{-\left(x^{3}-5 x^{2}\right.}{-16 x^{2}+95 x-75} \\
\left.\frac{-\left(-16 x^{2}+80 x\right.}{15 x-75}\right) \\
\frac{-(15 x-75)}{0} \\
\hline
\end{array}
$$

$$
x^{3}-21 x^{2}+95 x-75=0
$$

Since we divided by $x-5$, and the remainder was Zero, $x-5$ is a factor

$$
\begin{aligned}
& (x-5)\left(x^{2}-16 x+15\right)=0 \\
& (x-5)(x-15)(x-1)=0
\end{aligned}\left\{\begin{array}{l}
\frac{28}{4}=7 \\
4 \cdot 7=28
\end{array}\right.
$$

by Z.F.P.

$$
\begin{array}{llr}
\begin{array}{lll}
x-5=0 & x-15=0 & x-1=0 \\
x=5 & x=15 & x=1
\end{array} & \{1,15\} \\
\text { is an E.V. } & &
\end{array}
$$

The sum of two numbers is 5 . twice one of them reduced by 3 times the other one is -5 .
use system of linear equs to find both numbers. $\quad 3\left\{\begin{array}{l}x+y=5 \\ 2 x-3 y=-5\end{array}\right.$
The numbers are $2 ; 3$.

$$
\begin{aligned}
& \begin{aligned}
3\left\{\begin{array}{rl}
x+y & =5 \\
2 x-3 y & =-5 \\
5 x & =10 \\
x & =2
\end{array}, \begin{array}{rl}
2 x
\end{array}\right. \\
\hline y=3
\end{aligned} \\
& 2+y=5 \quad y=3
\end{aligned}
$$

find eqn of a line that contains $(5,0)$ and $(0,-4)$.

$$
\begin{array}{ll}
m=\frac{0-(-4)}{5-0}=\frac{4}{5} & y-y_{1}=m\left(x-x_{1}\right) \\
& y-0=\frac{4}{5}(x-5) \\
& y=\frac{4}{5} x-\frac{4}{5} \cdot 5 \\
& y=\frac{4}{5} x-4
\end{array}
$$

Solve غ. graph

$$
\begin{gathered}
6-3 x \leq x+18 \\
-3 x-x \leq 18-6 \\
-4 x \leq 12
\end{gathered} \quad \rightarrow \frac{\frac{-4}{-4} x \geq \frac{12}{-4}}{x \geq-3} \begin{gathered}
-3 \\
{[-3, \infty)}
\end{gathered}
$$

Simplify $\left(\frac{-3 x^{-4}}{2 y^{-6}}\right)^{-4}$

$$
=\left(\frac{-3 y^{6}}{2 x^{4}}\right)^{-4}=\left(\frac{2 x^{4}}{-3 y^{6}}\right)^{4}=\frac{16 x^{16}}{81 y^{24}}
$$

Divide: $\frac{25 x^{3}-10 x^{2}+5 x}{-5 x^{2}}$

$$
\begin{aligned}
& =\frac{25 x^{3}}{-5 x^{2}}-\frac{10 x^{2}}{-5 x^{2}}+\frac{5 x}{-5 x^{2}} \\
& =-5 x+2-\frac{1}{x}
\end{aligned}
$$

class QZ
FOIL, Simplify, then Solve by using Quadratic formula:

$$
(3 x+1)(2 x-1)=4
$$

